
ICT167 ANS2

Object oriented design properties:

 Supports abstraction in particular data abstraction. Data abstraction allows the data in the

program to be organised by putting related data together and having a simple name for the

big lump of data

 Supports re-use, allowing programmers to reuse their own and other people’s code

 Encourages the design of code to be appropriate for a problem domain rather than a

particular task

Object vs Class: *Every object is an instance of a class*

 A class is a description of a kind of object or plan for all possible object. An object represents

an identity that can be distinctly identified.

 Instantiation is the creation of an object from a class. We can then only use the object

 Object inherit the methods of the class and the Instance variable

Components of an object:

 Identity- identify what object you are dealing with

 State- the attributes object may have and it might change

 Behaviour- what the object performs and what things can be done to the object

Primitive type variable vs Class type variable:

 Each variable must be declared to be a particular type. The two types may include- primitive

type (characters) or class type (array and string)

 A primitive type variable stores a value in a memory location assigned to the variable. A class

type variable stores the memory address of where the object is located.

 A variable of type: class are a data type class they refer to a particular object belonging to a

class. This type of variable contains data and methods for the class

 The primitive types are passed to other methods through call-by-value while class type

variable are passed using call-by-reference

(refer to ICT167Ans3 to learn how to pass an object/class type variable to a method)

UML class diagram:

 Outlines the definition of a class diagrammatically

 + public instance variable or method: (refer to future lecture) Can be used by client w/o any

restrictions

 - private instance variable or method: (refer to future lecture)

http://pages.cs.wisc.edu/~hasti/cs302/examples/UMLdiagram.html

Instance variable vs local variable vs static variable: [Will be in EXAM. Refer to lecture 4 32mins]

 Instance variables are the data that are attached to the class itself. They are declared in a

class and can be used by all the methods in the class.

o EG SpeciesOfMonth = 15;

 A local variable are defined within a method. The variable is only used within the method

that declared the variable.

 A static variable is a variable that stores the same value for ALL objects created and can be

accessed by all objects for that class. Changes to the static variable changes the variable for

all object unless there is keyword FINAL

Public Instance variables:

 Means that any other class/program can directly access/change the instance variable. So

client can access instance variable from their client

program

 Attached to the class itself not inside methods

o EG: public String name, public int population

 To use: [class variable].variable = …  Must have

instantiated

Private instance variable

http://pages.cs.wisc.edu/~hasti/cs302/examples/UMLdiagram.html

 Client can’t access outside class itself unless getter/change instance variable from their

client program

o EG for like bank balance variable in ATM

 Attached to class itself not inside methods or method itself is attached to class

o EG: private String name, private int population

 To use: Create both accessor method and mutator method (Refer to lecture 3)

STRING (class) methods:

import java.lang;

String [class variable] = new String(“Hello”);

OBJECT

METHOD DESCRIPTION RETURN? +

PARAMETER?

[class variable] .length() length of the string R  Integer

P  No

IMPORTANT

[class variable] .trim() Returns a copy of

the string, with

leading and trailing

spaces removed.

R  String

P  No

[class variable] .charAt([parameter]) Return the character

for the specified

index

R  Character

P  Yes

number/integer

variable

[class variable] .substring([parameter1,

parameter 2])

IMPORTANT

[class variable] .equals([class

variable2])

Compares two

strings based on the

content of the

string. NOTE ==

doesn’t check this it

checks whether

string are in

common memory

location

R Boolean

P  Yes

IMPORTANT

 .equalsIgnoreCase() Compares two

strings based on the

content of the string

irrespective of case

of the string (ie

capital letters)

 .compareTo() Compares two

strings

lexicographically

IMPORTANT

 .compareToIgnoreCase()

 indexOf()

Character Input:

Char InputCharacter = ‘[character]’;
Must have ‘’

	ICT167 ANS2

